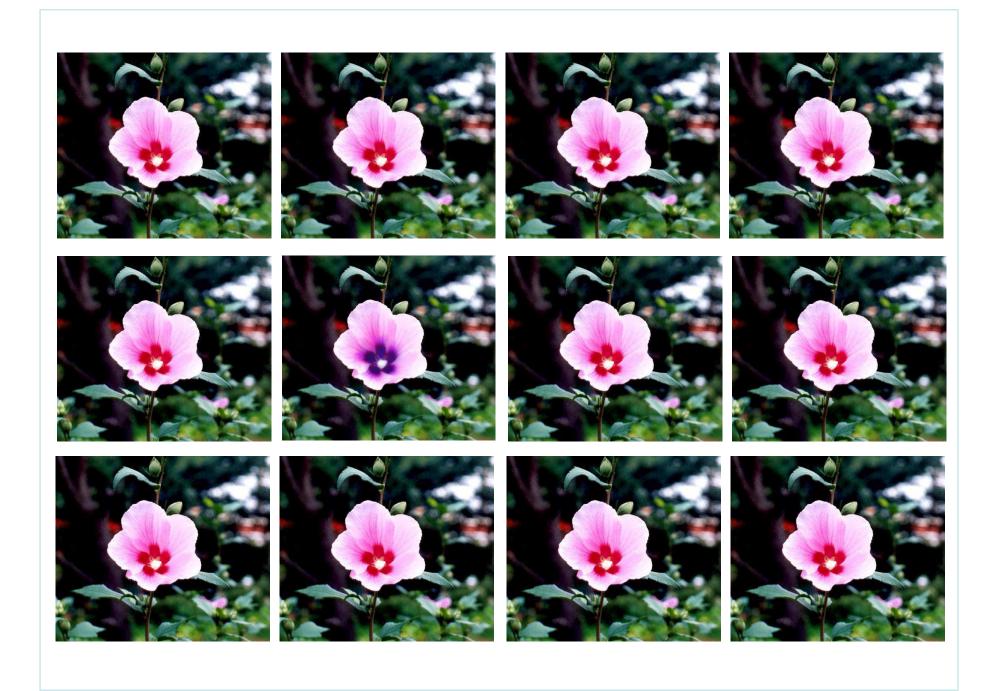
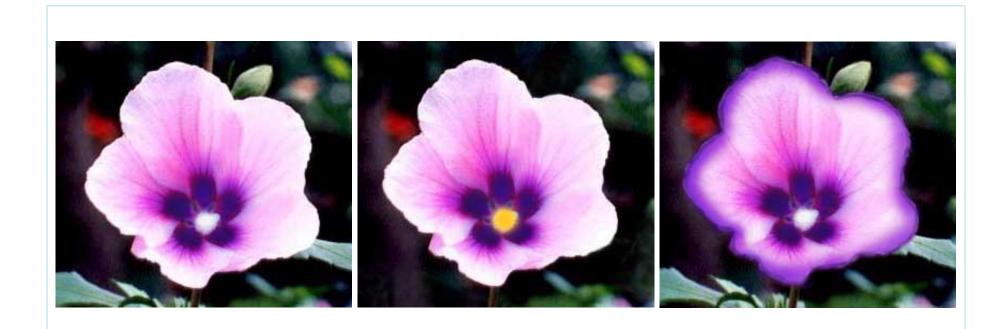
the NIH Pediatric & Wildtype GIST Clinic

4th GIST Clinic Lecture

Results from the NIH Pediatric and wildtype GIST Clinic

Characteristics of patients with Pediatric GIST


Younger patients with GIST tend to differ from adults


- female gender

- no mutations in *KIT* or *PDGFRA* (wildtype)

- slower growth of tumors?

the NIH pediatric GIST clinic

Objectives

To bring together healthcare providers who have the most experience treating and studying GIST, with every child and young adult with GIST

To obtain clinical history, response to prior treatments, histopathologic results, radiographic assessments and genetic/molecular analyses

Continue long-term follow-up for these patients

the NIH pediatric GIST clinic

Goal

To utilize the combined data from the clinic, with new research findings, to design innovative national treatment protocols

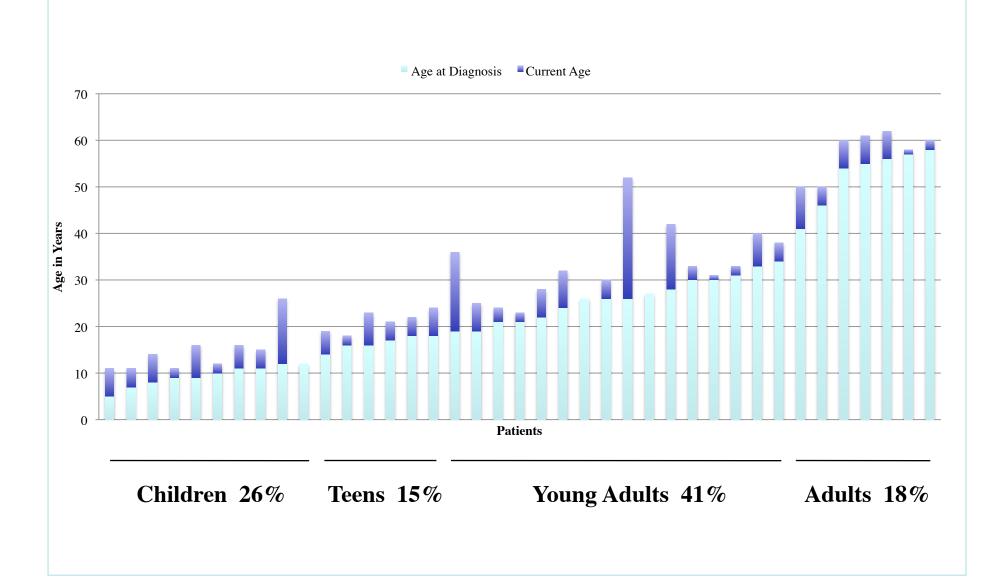
To collect tissue samples to perform clinical and laboratory studies to define new targets for potential treatment and to determine the biological differences between older and younger patients with GIST

NIH GIST clinic Patients

national pediatric GIST team

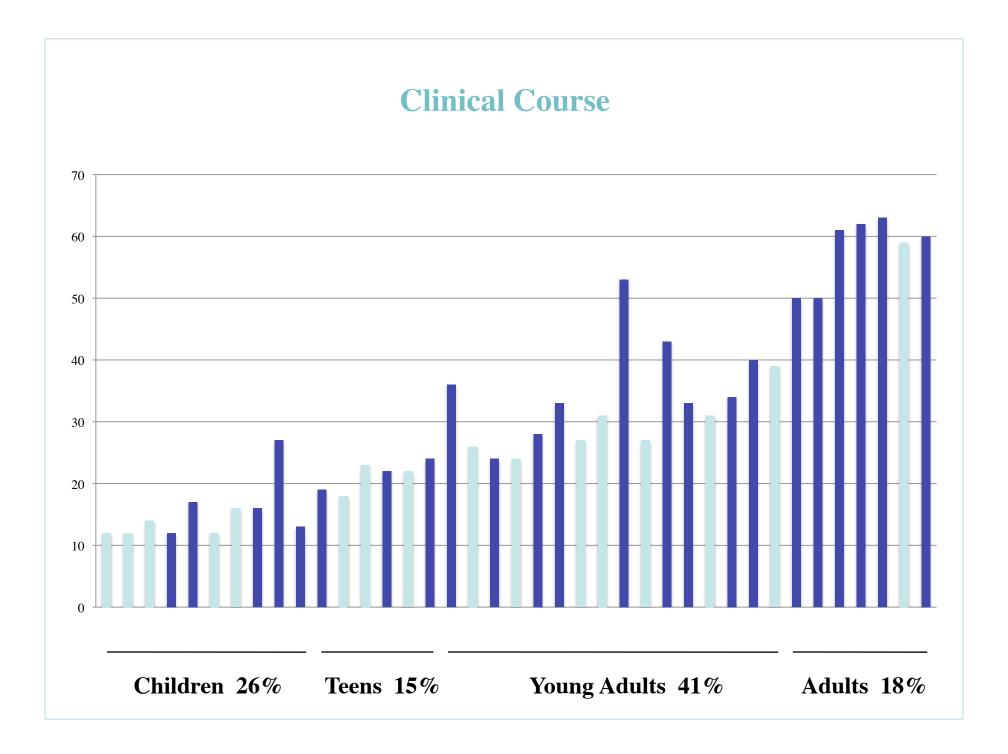
Alberto Pappo Katherine Janeway Michael LaQuaglia George Demetri Cristina Antonescu Pediatric Oncologist Pediatric Oncologist Pediatric Surgeon Medical Oncologist Pathologist Texas Children's Hospital Dana Farber Cancer Center Memorial Sloan Kettering Dana Farber Cancer Center Memorial Sloan Kettering

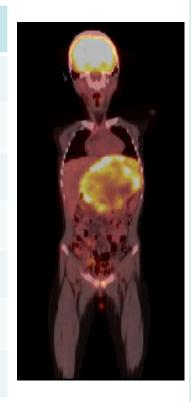
Constantine Stratakis Lee Helman Su Young Kim


Endocrinologist
Pediatric Oncologist
Pediatric Oncologist

NICHD NCI NCI

Phyllis Gay Tricia McAleer GSI Life Raft Group




Comparison of Adult KIT-mutated versus our patients

Adult KIT-mutated		NIH Clinic
56.0	age	31.1
46%	female gender	79 %
uncommon	epithelioid histology	70%
90%	mutations	0%
50%	stomach primary	79%
rare	multifocal disease	56%

Clinical Course

	NED	SD	PD	Deceased	Total
Children	50%	30%	10%	10%	10
Adolescents	50%	37%		12%	8
Young Adults	42%	29%	29%		14
Adults	14%	57%	29%		7
Total	41%	36%	18%	5%	39

It is still unclear if younger patients have less aggressive disease Will require more patients and a longer period of follow-up

Is There A Low-Risk (Benign) Form of GIST?

	FIRST NED	RECURRENCE	
average age	21.4 years (12 – 31)	33.1 years (12 – 62)	p=0.02
remission or recurrence	37.6 months (13 – 55)	22.5 months (3-57)	p=0.04
tumor size	7.1 cm (4-9)	7.0 cm (2-22)	p=0.91
mitotic count	8.2 per 50 hpf (1-16)	19.9 per 50 hpf (4-50)	p=0.01

Too much overlap to clearly define a low-risk cohort at this time

What is the Role of Surgery to Treat Recurrence?

9 patients remain in first remission (27%) 9 - 55 months 24 patients have recurred (73%) 3 - 57 months

13 have undergone a second surgery

11 have recurred (85%)

2 underwent complete gastrectomy

1 has recurred (50%)

Surgery in itself is not curative in the vast majority of cases of recurrence in the setting of wildtype GIST

Avoid radical surgery

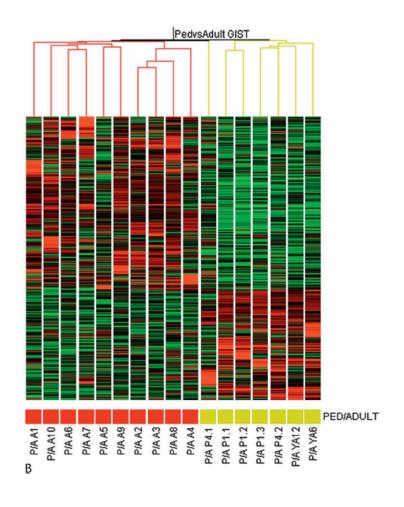
What is the Role of Tyrosine Kinase Inhibitors?

	CR	PR	SD	PD	side effects	N/A	adju vant	recent	TOT
Imatinib	0	1	1	20	3	3	6	0	34
HD Imatinib	0	0	3	2	2	1	0	0	8
Sunitinib	1	0	4	10	3	3	2	1	24
Nilotinib	0	0	1	2	0	0	0	6	9
Sorafenib	0	0	0	0	3	1	0	0	4
Dasatinib	0	0	0	0	1	0	0	0	1
TOTALS	1	1	9	34	12	8	8	7	80
	(1%)	(1%)	(16%)	(60%)	(21%)				

The response rate to TKI therapy is much lower than for adults with KIT/PDGFRA mutated GIST

Keloid Formation

Facial Phenotypes



3DMD - facial videography - overlays expected following 4th clinic

Dr. Demetrio Domingo, DDS MS

Dental Clinic Director

Pediatric versus Adult GIST Microarray

Prakash 2005 J Pediatr Hematol Oncol 27:179

Gene	Fold Change			
NLGN4	16.71			
ASRGL1	14.89			
IGF1R	14.22			
FOXD1	13.13			
FZD2	12.22			
ANK3	10.56			
GPRC5B	6.22			
PHKA1	3.76			
CDKN2A	2.50			
MITF	2.24			
GLIPR1	- 6.00			
PDGFRA	- 9.39			
ABCC9	- 12.54			
GPR88	- 16.32			
RAB38	- 22.28			
DPT	- 36.19			

SARC 015: A Phase II Trial of R1507 for Wildtype GIST

Principal Investigators

Margaret von Mehren Fox Chase Cancer Center

Katherine Janeway Children's Hospital Boston

Sarcoma Alliance for Research through Collaboration

Inclusion Criteria

age >2 years wildtype KIT and PDGFRA advanced, measurable disease

Treatment Regimen

R1507 IV 16 mg/kg q3weeks CT and PET at baseline CT q 3-4 cycles

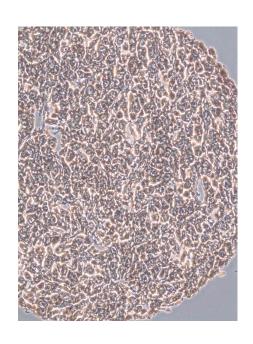
BRAF Mutations

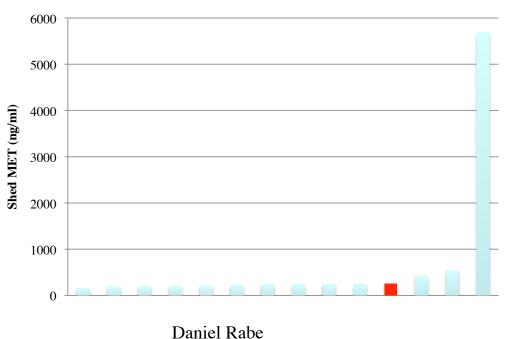
benign melanotic nevi have BRAF mutations - 95% of mutations are BRAF V600E

(Poynter et al. 2006 Melanoma Research 16:267)

a small number of GISTs have BRAF mutations

(Agaram et al. 2008 Genes, Chromosomes & Cancer 47:853)




MET Expression

MET is a cell surface tyrosine kinase receptor

Lillian Guenther and Natasha Fewks Pediatric Oncology Branch

Serum Measurement of Shed MET

Urological Oncology Branch

Moving from Natural History to Treatment

Gene	Primary Test	Secondary Test	Therapy
B-RAF	2 / 39	0 / 1	BRAF TKI
MET	3 / 12	pending	MET TKI
EGFR	12 / 16	pending	EGFR antibody
NY-ESO	0 / 17	will not pursue	modified T-cell
SDH	7 / 38	0 / 2	Topotecan / Avastin
IGF-1R	measurable disea	se	IGF-1R antibody

the NIH Pediatric & Wildtype GIST Clinic

the NIH pediatric GIST team

Art Therapist Megan Robb

Clinical Nurses Joan Sheeren, Patty McGinley

Complementary Medicine Scott Miller

Coordinator Sherri DePollar

Dermatologist Heidi Kong

Geneticists Constantine Stratakis, Margarita Raygada, Maya Lodish

Medical Oncologists Shivanni Kumar

Nutritionist Jennifer Graf

Pediatric Oncologists Lee Helman, Su Young Kim

Radiologist Baris Turkbey, Peter Choyke

Research Nurses Christine Graham, Donna Bernstein, Lauren Long, Robyn Bent

Pain Specialist Ann Berger, Dan Handel

Pathologist Maria Tsokos

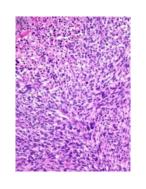
Psychosocial Specialist Lori Wiener

Rehabilitation Medicine Donna Gregory

Social Worker Barbara Santangini

Videography Demetrio Domingo

the NIH Pediatric & Wildtype GIST Clinic


Vision of the Future

Utilize the NIH Pediatric GIST website as a portal for:

HIPPA regulation secure storage of medical information - medical records, radiographic images, pathology slides

Weekly Tumor Board to discuss new or problematic cases - patient, physician, CPGR participants, specialists

Thanks

To the patients and families
To members of the support groups
To physicians who volunteer
To the NIH GIST healthcare team

Joanna Meadors

Kaylee Nuckolls

Shannon Larabie

Laurie Griffin